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SUMMARY

We will describe a finite difference code for computing equilibrium configurations, of the

order-parameter tensor field for nematic liquid crystals, in rectangular regions, by minimization of

the Landau-de Gennes Free Energy functional. The implementation of the free energy functional

described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through

fourth order. Boundary conditions include the effects of strong surface anchoring. The target

architectures for our implementation areSIMD machines, with interconnection networks which can

be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative

efficiency of a number of iterative methods for the solution of the linear systems arising from this

discretization on such architectures.

INTRODUCTION: LIQUID CRYSTALS

Liquid crystal based technology plays a key role in many devices such digital watches and

calculators, active and passive matrix liquid crystal displays in laptop computers, switchable

windows using Polymer Dispersed Liquid Crystals (PDLCs), thermometers, temperature sensitive

films and materials such as Kev!ar which employ high-strength liquid crystal polymers. In addition

they are likely to play a key role in developments such as High Definition Television (HDTV) and

optical communications and computing.

Liquid crystals are so called because they exhibit some of the properties of both the liquid and

crystalline states. In fact they are substances which, over certain ranges of temperatures, can exist

in one or more rn,e._opDa._e._ somewhere between the rigid lattices of crystalline solids, which exhibit

both orientational and positional order, and the isotropic liquid phase, which exhibits neither.

Liquid crystals resemble liquids in that their molecules are free to flow and thus can assume the

shape of a containment vessel. On the other hand they exhibit orientational and possibly some

positional order. This is due to the intermolecular forces which are stronger than those in liquids
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and which cause the molecules to have, on average, a preferred direction. Liquid crystals may exist

in a number of mesophases, such as the 7_en_¢l,tie.._mectie, ehole._terie phases (see [3]).

In this paper we shall confine ourselves to nematic liquid crystals, which exhibit orientational but

no positional order. We wish to study the orientational order and the inter-molecular forces that are

present in a nematic liquid crystal material. To do this we need a quantitative measure of the

degree of order and of the total free-enerqy (sum of inter-molecular forces) in the system. A typical

liquid crystal molecule is long, rod-like and rigid. Its direction in space is given by the unit vector

n = (nl, n2, n3). The molecule points in the n or -n direction with equal probability; therefore,

there is no up or down direction. The director ¢_= (nl, n2, n3) is also a unit vector showing the

preferred average direction of the molecules at a point in the sample. The de.qree of order of a liquid

crystal material at a particular point in the sample can be measured in terms of the statistical

average of the angles 0, which molecules make with the director. A more common measure that is

used is S :=< 3cos20 - 1 >/2, where <> is a thermodynamic or temporal average. A value close

to 1 indicates a strong ordering of the molecules as is present in a crystalline solid. Values near zero

indicate random ordering, such as exist in an isotropic liquid. The order parameter S depends on

the temperature T.

Most early theoretical and computational results on liquid crystals employed the Oseen-Frank

theory. This assumes that the degree of order S is uniform throughout the material and seeks to

calculate the equilibrium configuration of the material by obtaining the director field which

minimizes the free en er.qy rum etioT_ al

1

f_{Kl(V.n) 2 + K2(n.V x n) 2 + K31n x V x hi2}.F(n) := _

In an infinite bulk the preferred configuration for the director field is one of uniform parallel

alignment. This will not normally be the case in practicel however, due to the effects of boundaries

and external fields. This theory, while instrumental in predicting many important phenomena in

liquid crystal physics, has some deficiencies. In particular, it is inadequate to model behavior close

to a defect, where the order may not be uniform and the director may not be well defined. For

example, in the presence of a radial field about a line defect this theory will exhibit a singularity at

the core. For thiS_=reason there is increased emphasis on the more computationally complex
Landau-de Gennes formulation.

THE LANDAU DE-GENNES FORMULATION

The Landau-de Gennes formulation describes nematic liquid crystals by a 3 × 3 symmetric, traceless

tensor order parameter Q. The local orientational information is given by the eigenvectors and

eigenvalues of Q at each point. Several behaviors can be distinguished by considering the relative

magnitudes of the eigenvalues. The material is said to be u_ia.7"ial if Q has a unique largest

eigenvalue, with the two other eigenvalues equal to minus half the largest one. The corresponding

eigenvector gives the locally preferred direction . Thus this is the case which can be represented by

the Oseen-Frank theory and in fact in this case Q can be represented in the form

Q = 1S(3fihT - I)



where S is the value of the maximum eigenvalue and _ is the normalized eigenvector associated with

it. The Landau-de Gennes formulation, however, is capable of representing more complex behaviors,

such as the biazial case, where all three eigenvalues are distinct and the isotropic case, where all

three eigenvalues are equal and hence, because Q is traceless, all three are 0.

To obtain the equilibrium tensor field again seek a tensor field Q that minimizes the free energy of

the system. In this case, the free energy can be expressed as

F(Q) = Fvo_(Q)+ Fs_f(Q) = J_[ fvo_(Q)+ fo A_f(Q),
fl

where gt and 0it represent the interior and surface of the slab respectively. In this implementation

we limit ourselves to strong anchoring on the surface of il.

The term Fvol(Q) gives an approximation of the interior free energy and is given by the following

expression, (see, for instance [18]):

1 L 1L IL +2 A trace(Q 2)fvol(Q) := "_ 1Q_,_Q,_,_

1
trace(Q2) 2 + 5Dtrace(Q2)trace(Q3)-_Btrace(Q _) + _C

(1)

1 M' trace(Q3) 2 - AXm_H_Q_H_
+_ Mtrace(Q2)3 + 6

where L1, L2, and La are elastic constants, A, B, C, D, M, and M' are bulk constants, and H,

AXma_, and E are the field terms and constants associated with the magnetic field respectively, and

the convention is used that summation over repeated indices is implied and that indices separated

by commas represent partial derivatives. The surface free density f_f has the form

f_u,f(Q) := _ Vtrace((Q - Qo) 2) (2)

where Q0 is a tensor associated with the type of anchoring of the surface elements and V is

prescribed constant. In the strong anchoring case presented here Q cannot vary from Q0 and hence

fo_fsurf(Q) :0.

For P E f_, the tensor Q(P) will be represented in the form,

Q(p) 3= (Q_,_)_,,_=I

--- ql(P)¢l + q2(P)¢2 + q3(P)¢3 -{- q4(P)¢4 + qs(P)¢5

0/= ql(P) _ 0 + q2(P) 0

o
0 6

o o
3

+q3(P) _ 0 0 +q4(P) 0 0 0

0 0 0 _ 0 0

°°I_-3 0
6

o -,/5
3

0 0 O)
+ qs(P) 0 0 _22 ,

{qe(P)}e=1 are real-valued functions on il.similar to that in Gartland [12], where 5
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THE PHYSICAL PROBLEM

The discretization of the full slab problem in which a finite differenceapproximation of the
equilibrium configuration of liquid crystals in a slab

{(x,y,z).0 < x _<a,0 _<y _<b,0_<z _<c)

is given in [7]. In this paper we shall co_nfine our consideration_t0 the c_e of an infinite slab.

Assuming the slab is infinite in the z-direction and imposing boundary conditions, which do not

vary with z, effectively reduces the problem to a two dimensional problem on a rectangle:

_:={(x,y):O<_x<a, O<y<_b}.

The region is discretized in the standard manner by dividing the rectangle gt into I × J regions

v(i,j) = {(x,y): iAx < x < (i + 1)Ax, jAy <_ y < (j + 1)Ay}

for 0 < i < I- 1, and 0 < j < J- 1, where Ax = a/I, Ay = b/J.

• .: .£ :: 7

The discrete interior free energy integral is now represented by

fvol(Q) "_ _ fvol(Q(xi, yj)) × volume(v(i,j)), (3)

where the points P = (xi, yj), for xi = lax and yj = jay, are located in the lower left-hand corner

of the rectangle v(i, j). The derivatives with respect to x and y in (1) are approximated using

central difference approximations.

With the assumption of strong anchoring, a second order accurate approximation of the Landau-de

Gennes free energy density given by

F(Q) _ _ f,,o_(Q(xi, yj)) × volume(v(i,j))= _ h(x_,yi) (4)
i,j i,j

is obtained. With the discretization (4), the problem is reduced to one of minimizing _i,j h(xi, yj)

overall choices of {qt(xi, Yj)}_=I. This unconstrained discrete minimization problem can be attacked

in the standard way. That is, seek a solution of the non-linear system of equati_s

g(_,_,)) := OE_,j,kh(x_,yj)= O, (5)
Oq ( Y3)

for 0 < _ < I, 0 < ) < J, and _ = 1... 5. A standard approach to solving non-linear systems such as

these is to use a modified Newton method (see [6]).

Each iteration of the modified Newton method involves solving a linear system, whose matrix is the

Jacobian of (5), and then using that solution to update the iterate and the Jacobian, after which

the process is repeated. The system in question is a large symmetric system, but for certain values

of the temperature it may become indefinite. In addition, it may be expected to exhibit multiple

solutions, which may be either stable or unstable. The ultimate aim of this research is to track the
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minimal energystatesasthe temperaturevariesand to model the resultingbifurcations and phase
transitions.

THE WAVETRACER DTC ARCHITECTURE

The target architecture for this application is a massivelyparallel SIMD computer. A SIMD
computer usesmultiple synchronizedprocessingelementsthat operate in a lock-stepfashionto
achieveparallelism. Eachprocessingelement(PE) performsthe sameoperation at the sametime on
its local data which is either stored in its own local memoryor in a sharedmemory. A control unit
(CU) broadcastsinstructions to the processingelementsfor execution. EachPE can beeither active
or inactive during a particular operation. The control unit determineswhich PEs are to participate
by meansof a maskingfunction that either turns a PE on or off. Only the selectedprocessors
executethe instruction, while the maskedprocessorsremain idle. The control unit normally buffers
data and instructions that will be broadcastto the processorarray. A front-end computerprovides
the programmingenvironmentalongwith the usualprogrammingutilities suchasa debuggerand a
compiler. Program codeis compiledand separatedinto scalarand parallel instructions. Scalar
operations areusually executedon the front-end, thus freeingthe processorarray to perform only
parallel computations. This architecture is considerablysimpler to implementand program than
the alternative Multiple Instruction Multiple Data stream (MIMD) machines,in which each
processorcan executea different instruction. The SIMD architecture is normally usedfor massively
parallel machines,havingbetween4096and 65536processors,eachwith local memory,connectedby
a specialpurposehigh-capacitycommunicationnetwork. Early examplesof this architecture
included the MASPAR MP-1 and MP-2 and the Thinking MachinesCorporation Connection
MachineCM-1 and CM-2.

The platform chosenfor this implementationwasthe WavetracerData Transport Computer (DTC),
situated in the Departmentof Mathematicsand Computer Science at Kent State. This has a

number of unique features compared with previous SIMD computers. It was designed as a low cost

massively parallel processor, which can deliver "super-computing" levels of performance at

relatively low cost. Unlike previous SIMD machines, which had dedicated front-end processors for

storing scalar data and performing uni-variable (scalar) computations, the DTC uses a standard

workstation for this purpose as well as for compilation and storage of the program. Among

front-ends supported were the Sun 3, Sparc and Hewlett-Packard/Apollo workstations.

The DTC is connected to the front-end by means of the industry standard Small Computer System

Interface (SCSI), which is normally used to connect hard disks. The maximum bandwidth of this

interface is 5 Mbytes per second. The front-end sends instructions and data to a control unit, which

decodes these instructions and broadcasts both instructions and data to the processor array. The

array processors are semi-custom 1.5 micron standard cell chips. Each chip contains 32 one-bit

processors together with 2 kilobits of fast RAM for each processor, and associated control and

memory error-detection circuitry. In addition, each processor has access to between 8 and 32

kilobytes of private external dynamic memory depending on the configuration. Each circuit board

consists of 128 chips. The minimal configuration, the DTC-4, has one circuit board and thus 4096

processors. Other configurations are the DTC-8, with 2 circuit boards and 8192 processors, and the

DTC-16, with 4 circuit boards and 16384 processors.
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The processorson eachcircuit board of the DTC-4 canbe configuredeither as a 16x 16x 16cube,
for three dimensionalapplication, or a 64 x 64 square,for two dimensionalapplications. The
DTC-8, canbe configuredas 16x 32 × 16cubeor a 64x 128square,and the DTC-16 asa
32x 32 x 16cube or a 128x 128square.The assumptionhereis that most applicationscorrespond
to physical problems in 2 or 3 dimensions,and thus a 2 and 3 dimensionalinterconnectionnetwork
is the most efficient for their solution. This is in contrast to the ConnectionMachine, in which the
processorsareconnectedby a hypercubenetwork.

There area number of factors which affect the DTC's performance.Firstly, the speedof the
front-end is a determining factor in the overall performanceof the DTC, sinceall uni-variable
expressionsare processedon the front-end and, in addition, all instructions arepassedfrom the
front-end to the control unit. In addition, although the DTC providesefficientdata movement
along the grid, the results of propagatingdata to the left, for example,are undefinedat the right
boundary nodes. In addition, for problemswith periodic boundary conditions it is desirablethat
the interconnectionnetwork have wra.parouvd, in which one can propagate values from one

boundary to the other. This is not provided. This also poses a problem for periodic geometries such

as spherical or ellipsoidal. One other inconvenience is that there is no microsecond timer on the

DTC and all timings must be done on the front end.

The traditional mode of solution of problems on a SIMD machine involves assigning one processor

of the array per node in the problem space. To provide the ability to consider problems with more

nodes than are available in the array, the DTC provides the ability to partition the memory of each

processor to provide a larger number of ,i,'i.rt._tat proee._._or._. There must be the same number of

virtual processors for each physical processor. The number of virtual processors per physical

processor is called the virtual proce._.qor ratio. The controller automatically issues instructions to the

array once for each partition. Thus the execution time may be expected to increase linearly with

the virtual processor ratio.

The Wavetracer used in the results presented here was a Wavetracer DTC-4 with a Sun 3/50 front

end. Current codes are bring run on a Wavetracer DTC-16 with a Hewlett-Packard/Apollo 705

front end. For the minimization problem we are considering, each discretization point, P, of the slab

is associated with a virtual processor. Since the virtual processors are arranged in a rectangle or

cube, similar to the actual processors, this provides an entirely natural mapping of the domain onto

the rectangular grid of the DTC, provided an equal number of grid points are used in each direction.

At each point P of the slab the tensor order parameter Q is defined in terms of the 5 unknowns

{q_(P)}e=l,5. In our implementation, each set of 5 unknowns {qe(P)}t=l,5 is stored in a single virtual

processor. Associated with each unknown q_(P) there is also a corresponding row of the Jacobian

matrix. The nonzero constants of that row are also stored in the memory of the processor

associated with P. Each non-zero constant, in a row of the Jacobian associated with P, also

corresponds to another virtual processor (which in turn corresponds to a discretization point) to

which the values of {q_(P))_=l,5 at P must be cornmunicated when the Jacobian matrix is updated.

The set of processors with which a given processor, P, must communicate in order to update its row

of the Jacobian is called the stencil of P. If the stencil of any processor is large, then the process of

updating the Jacobian at each step of Newton's method will be expensive. Fortunately, the finite

difference approximation described here yields a relatively small and compact stencil. In the
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problem discussedbelow, the stencil will at worst consistof the nine points which correspondto
processorsat most two stepsawayfrom the given processor.

SOLUTION OF THE MINIMIZATION PROBLEM

Non-linear iterations

The minimization of the freeenergycanbe carried out by solution of the correspondingdiscrete
Euler-Lagrangeequationsgivenby (5). Thesegiverise to a coupledsystemof five non-linearelliptic
partial differential equations.

An alternative approachis to computethe Euler-Lagrangeequationsfrom f_ f_ol(Q). Discretizing

these produces a system similar to (5). In this case central differences are used for the unidirectional

partial derivatives. Two alternative choices of discretizations for the mixed derivatives, both having

the same accuracy, are considered. One produces a seven and the other a nine point stencil at each

nodal point in the domain. Since nearest-neighbor communications are efficient on the Wavetracer's

mesh array of processors, the communication costs are minimal. A reduced model in which

L2 = L3 = D = M = M' was also considered. This is significantly less complex and gives rise to a

five point scheme. Results for this case were considered in [7].

In all cases the resulting non-linear system of equations was solved using a (modified) inexact

Newton method. Let G : R n --* R n be a function representing the discrete Euler-Lagrange

equations. There are a total of 5(I - 1)(J - 1) non-linear equations in this system. The function G

depends on the 5n unknowns

a(x) a 1= ..., qg,ql,..., q2,..., q,,...qD,

where n = (I - 1)(J - 1) is the number of nodal points. Let G'(x) be the Jacobian of the system of

equations. Newton type methods require solving a large sparse linear system G'(Xk)Sk = --G(xk)

and then updating the unknowns appropriately.

In theory, Newton's method requires the exact solution to the linear system for each Newton

iteration. Inexact Newton methods use some form of iterative procedure to solve the linear system

approximately. Several iterative techniques such as SOR and multigrid were tested on this problem

with varying success. Note that the matrix A ;--G!(xk) is singular at bifurcation and turning points

and can be indefinite near these points. This can cause convergence problems when solving the

inner linear system. It is well known that in the early stages of the Newton or outer iteration

process, the linear system need not be solved to full accuracy, since Xk is relatively far from the true

solution x*. Thus only a few inner iterations of the linear solver need to be performed. In later

stages, the inner system will need to be solved more accurately. This is precisely the philosophy of

the inexact (modified) Newton method. A common criterion used to determine how many inner

iterations are needed is as follows. In the k th iteration, compute a value nke[0, 1) which is an
1 ._ 1 andacceptable bound on the relative residual. Common choices for this are nk := 7_'r, nk .- k+---5,
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nk := min{[[G(xk)[[, _-_2 }" For these problems the second of the above choices proved on average to
give the best results. The update Sk was then determined by:

Ila(xk)ll

Expression (6) may be interpreted intuitively as indicating that one should iterate until the inner

residual becomes "small" enough, then do an update.

Linear System Solvers
- 2

Several classical iterative schemes were used to solve the inner sparse linear system for ql,- --, q5 at

each nodal point: Each method had certain advantages and disadvantages when used as a solver On

the Wavetracer. The following schemes were evaluated •

:::1-. Multi-c01or SOR :

2: Nested (multilevel) mu!ti-c0iorSOR
3. Preconditioned conjugate gradient

4. Multigrid (V-cycle)
5. Nested (multilevel) multigrid

All were implemented as both point-iterative and as block-iterative methods by blocking the

ql,..., q5 at each nodal point. In the point iterative methods one solves for each qi sequentially,

using the best available values for the qj, j _ i. The block method involves solving a 5 x 5 dense

linear system at each node.

A multi-coloring scheme was used for the SOR iterations [17] in order to introduce parallelism into

the method. One should recall thatl _th red-black ordering, the Gauss-Seidel method decomposes

into two Jacobi steps on the half size systems resulting from the coloring. Unlike the original

Gauss-Seidel method, the Jacobi method is highly parallelizable. The multi-colored SOR produces

similar benefits. In the case of the reduced model with the five point stencil only two colors were

needed. Results for this case are given in [7]. In the full model, three colors are required for the

seven point stencil and four colors for the nine point stencil. The parameter w for the SOR method

was chosen as the optimal parameter for the simple Laplacian model since the matrix in our linear

system has a similar structure to the Laplacian matrix. Numerical experimentation showed that

this was a good choice for our reduced model and gave good convergence results.

Preconditioned conjugate gradient [17] using several pre-conditioners was tried and the performance

of all were essentially similar. The results are presented here for symmetric multi-colored SSOR

[17], which is simple to implement and easily parallelizable. : = =

Multigrid methods [2, 14, 16] were also implemented for these problems. The mu]tigrVd

implementation discussed here uses a single V-cycle in the inner iteration for each Newton outer
iteration. The Gauss-Seidel iteration is used as the relaxation method on the fine and intermediate

coarse grids. The Gauss-Seidel method was chosen over the SOR method for the fine and
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intermediate grids because of its better smoothiT_g property; that is, it eliminates the high frequency

components quicker in the early iterations than the SOR iteration. This is important because a few

iterations are performed on these grids per cycle of the multigrid algorithm. The relaxation

parameters ul and u2 were usually taken to be equal to 3. Multicolored SOR iteration was used to

solve the problem on the coarsest grid which was usually taken to be of size n -- 4. The problem

was solved to the level of the truncation error with usually just a few iterations. The numerical

simulations were mostly done on the two-dimensional problem of size n = 64, meaning 65 grid

points in both the x and y directions. Some smaller and larger problems were also examined, but

with the minimal configuration of the Wavetracer, the DTC-4, available at the time, the n = 64 size

problem was the largest that could be simulated for the full liquid crystal problem using the
multigrid method.

The implementation of the multigrid algorithm on the Wa, vetrac.er assigns a processor (virtual or

physical) to each grid point on the finest mesh, including the boundary grid points. The model

simulations all assume Dirichlet (strong anchoring) boundary conditions, so the boundary

processors are used mainly to store the boundary data. The Wavetra, cer uses a multi-array data

structure to hold the values for each grid level. Because of the restriction in the MultiC language

that each multi-variable in the executing program must be of the same size, this implementation

was deemed to be the most efficient and easiest to implement. One problem with this

implementation is that many processors are idle when solving on the coarser grids. The multigrid is

thus not a fully parallelizable method using this implementation because not all processors are

being utilized. Alternative variations have been proposed to overcome this problem. Data transfers

between grids are fast since they are handled within processor memory and no communications

between processors is required. Communications are required when computing the weighted

averages for the restriction operation, but the actual transfer of data to the coarser grid is all done

within processor memory. Another drawback to this implementation of the multigrid method is

evident when one solves the n = 64 size problem in two-dimensions. The physical two-dimensional

processor grid on the Wa, vetra, cer contains 64 processors in each dimension for a total of 4096

processors. The n = 64 multigrid problem requires 65 mesh points in each of the x and y directions.

This causes the Wave.tracer to operate in vi_ual memory mode. Since each physical processor must

contain the same amount of virtual processors, many virtual processors will remain idle during the

iterations, resulting in a great loss in efficiency. In addition, since the available memory associated

with each physical processor is divided into two halves, one for each of the virtual processors, the

maximum problem size, which can be solved, is diminished. Naturally, the solution would be to

define a slightly smaller problem of n = 63 that would not have this difficulty. The problem then

becomes one of how to define the series of coarser grids. In our original definition of the coarse grids

we let each grid size be a power of two. This greatly simplifies the construction of the grids and

provides the necessary symmetry to allow us to assign processors to the different grid levels in the

manner described. Data transfer between grids is also extremely simple, since it is all handled

within processor memory. Defining the coarse grids in any other way would greatly complicate the

programming process and would require many more computations and inter-processor
communications.

Another solution to this problem would be to use the boundary processors to not only store the

boundary data but also to take part in the iteration process. This means that now each boundary

processor would really represent two grid points in the mesh instead of only one. This would solve
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the virtual processing problem because one would actually need only 63 physical processors in each

direction for the n = 64 problem. However, another problem presents itself because of the SIMD

nature of the Wavetrace.r. In a SIMD environment each processor must perform exactly the same

operation as all the other processors, except on a different set of data. The boundary processors as
defined above would have to be treated separately from the interior processors because in the

communications stage of the algorithm they are not performing the same operation. An interior

processor must communicate with its four nearest-neighbors in a five-point stencil scheme, whereas

a boundary processor would only have to communicate with a subset of its neighbors since the

boundary data that it needs to do its update is stored in its own memory. In the two-dimensional

mesh the processors on each of the four edges of the grid must be treated separately as must the

four corner processors. In a naive implementation these sets of processors would be handled

sequentially in the iteration process, greatly slowing down the computations. In fact, if the obvious

choice is made, this could increase the update time nine times, which is considerably more than the

increase incurred by virtual processing. Unfortunately this problem is not so easily avoided when

one considers general boundary conditions rather than Dirichlet conditions.

Another alternative approach is to use a Black Box multigrid method similar to that in Dendy [4, 5].

This eliminates the restriction that the number of unknowns in the finest grid should be 2 k + 1; for

some k. In addition, by storing the interpolation operators explicitly, it allows the incorporation of

the boundary conditions, for example, by using extrapolation at the points closest to the boundaries.

Thus the boundary conditions are incorporated algebraically rather than by using the difference

equations directly. This does involve extra storage and in the SIMD case loss of parallelism due to

grid point dependent code. However judicious coding, involving initialized multipliers, can reduce

the latter effect at the expense of some further storage. There is reason to believe that, for most

problems of this type and most geometries, the increased storage will be less than 100% and thus

that a code of this type will consume less storage overhead than one involving virtual processing.

The philosophy behind the nested or multilevel schemes [1, 13] is as follows. The problem is solved

on a coarse grid to a certain precision. The results are then interpolated to a finer grid and used as

initial starting values for the solution process there. A sequence of successively finer grids is used,

the finest is the one on which the result is required. It is hoped that providing good initial guesses

will reduce the amount of work needed to obtain the desired accuracy on the finer grids. This effect

is observed in the numerical simulations. The multilevel methods suffer the same kinds of problems

that the multigrid iterations suffered when implemented on the Wave.tracer. The different levels are

implemented using a multi-variable array (in the MultiC language) with the physical (or virtual)

processors assigned to the grid points on the finest grid level. This means that when one iterates on

the coarsest level, many virtual processors will be idle. The interpolation of results between grids is

fast because it is all done within the processor and no inter-processor communications are necessary.
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NUMERICAL RESULTS

Laplacianand ScalarLiquid Crystal Problem

Laplacian in Two Dimensions

The model Laplacianproblem in two-dimensionsis given by:

- ux_ - u_y = f(x,y), u -- g(x,y) on the boundary of f2. (7)

Dirichlet boundary conditions are assumed and _ is taken to be the u_Ht square. The performances

of the various iterative methods previously discussed are compared for problems of size n -- 63 for

the one-level schemes and n = 64 for the methods using more than one Ievel. For these simulations

we also assume a known true solution given by

u=x_y _ (8)

which makes the right-hand side of equation (7)

f(x,y) = -2.0. + (9)

With this known solution one can compute the error as well as the residual after each iteration in

order to observe the convergence. The boundary values are set to the known true solution and an

initial guess of u = 0.0 is used at all interior grid points to start the iterations. At each iteration the

maximum absolute error and residual (infinity norms) calculated over all interior grid points are

monitored.

The Wavetracer DTC does not itself contain a micro-second timer. Consequently, all timings must

be performed on the Sun 3/50 front end. The columns real, user and syst give the real (wall clock)

time, the time spent in systems tasks related to the program, including input/output, and the time

spent in executing user code on the front end. The input/output time includes time spent accessing

the SCSI bus and thus time spent sending instructions from the front end processor to the sequencer

of the Wavetracer. User time includes time spent executing the sequential parts of the program. The

majority of the remaining real time is time elapsed while the DTC is executing parallel instructions.

The results of these simulations are given in Table 1. Given the initial guess u -- 0.0, the maximum

initial error is 1.0 and the maximum initial residuals arc approximately 7934 and 7684 for the

n = 64 and n = 63 size problems, respectively. The iterations are continued until the maximum

absolute error is reduced by about a factor of 105. A red-black scheme is implemented for all the

iterations (except Jacobi) to induce parallelism into the methods. The red-black coloring scheme is

appropriate since the model Laplacian problem uses a 5-point stencil for processor communications.

The iterations are done on the Wavetracer using a 64 x 64 physical two-dimensional grid of

processors.
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Table 1. Timings for the Model Laplacian

real user syst

Jacobi (n=64)

Jacobi (n=63)

Gauss-Seidel (n=64)

Gauss-Seidel (n=63)

SOR (n=64)

SOR (n=63)

Pre-cg (n=64)

Pre-cg (n=63)

Multigrid (n=64)

150.8

132.6

89.1

67.3

3.2

3.2

6.1

2.7

2.5

9.9 67.0

13.5 78.4

7.5 40.5

8.2 39.3

0.4 1.5

0.4 2.0

0.5 1.0

0.5 1.0

0.3 0.5

Problem on the Wavetracer DTC

max. residual max. error iterations

1.5(-3)
2.1(-3)

3.5(-5)

3.5(-5)

1.5(-3) 3.5(-5)

1.5(-3) 3.5(-5)

6.2(-2) _3.4(-5)

5.8(-2) 3.5(-5)

7.2(-2)

6.8(-2)

2.5(-5)
3.1(-5)

6901

6689

3451

3345

113

111

32

31

3.4(-2) 3.5(-5) 3 V-cycles

As expected, the Jacobi iteration is the slowest to converge. Even though it is completely

parallelizable on the Wavetracer, its slow rate of convergence does not make it competitive. The

Gauss-Seidel method converges in about half as many iterations as the Jacobi method. This is

expected for the model Laplacian problem. Since the Gauss-Seidel iterations are implemented in a

red-black ordering, each iteration takes slightly longer than a Jacobi iteration. For both the Jacobi

and Gauss-SeideI iterations the real running times for the n = 63 size problem are faster than those

for the n = 64 problem. This is because the n = 64 problem uses virtual processors whereas the

n -- 63 problem fits the physical grid of processors precisely.

The SOR method greatly improved the convergence of the problem. It needed only 113 iterations to

get to the same level of error as the previous two iterative methods (for the n = 64 problem). The

real times, user, and systems have also been significantly reduced. This agrees with the theoretical

results for the behaviour of these three iterative methods on the model problem.

The preconditioned conjugate gradient iteration was implemented using a red-black coloring scheme

and Symmetric SOR as the preconditioner. The method is competitive with the SOR iteration for

the n = 63 problem. It is, however, slower than SOR for the slightly larger problem.

To make a fair comparison, one must compare the multigrid algorithm with the n = 64 size

problems of the other four iterative methods, since multigrid was implemented using a finest grid of

this size. As one can see from the table, multigrid converges significantly faster than Jacobi,

Causs-Seidel and preconditioned conjugate gradient, and slightly faster than SOR (in real time). It

even beats the other four methods when they are run on the smaller problem. This shows that

multigrid is a very competitive method even with its limitations as discussed previously. Only three

V-cycles are needed to reduce the error to the desired level. Five levels were used (n = 4 at the

coarsest level) with ul = u2 = 3.

Scalar Liquid Crystal Problem

The scalar analog to the :full liquid crystal problem is of interest because it has a similar structure

to the full model. Various algorithms for solving the full model are first developed for the scalar

problem. The relative performances of these algorithms were basically the same for both models.
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The free-energy density for the scalar-field analogue to the full systems model is given by:

f(q)=2LlIVq[2 + 2Aq 2 - 3Bq3 + 1Cq4 - H2q (10)

where L1 is an elastic constant, A,B,C are bulk constants and H is a field term representing an

outside field such as a magnetic field. To minimize the free-energy of the system one needs to solve

the Euler-Lagrange. equation

-L1V2q + Aq - Bq 2 + Cq 3 = H 2. (11)

Equation (11) is non-linear in the scalar variable q. The resulting linear system that needs to be

solved at each Newton step is very similar in structure to the Laplacian problem. The only

difference is the additional terms on the diagonal elements of the A matrix that is a result of the

non-linearity of the scalar problem. The discretization of the scalar Euler-Lagrange equation

produces a 5-point stencil at each mesh point. The communications pattern is thus the same as it

was for the Laplacian problem. A red-black coloring scheme is sufficient to induce parallelism into

the iterative solvers used.

For the problem used in these tests L1 -- 1.0, A = B = C = 1.0, H = 0.0, with Dirichlet boundary

conditions given by :

q=l on x=landy--1, q=x ony=O,q=y onx=0.

The true solution to this problem is not known, therefore the error cannot be computed. The

maximum absolute residual at each iteration is used to monitor the convergence. The initial guess is

given by q=0.0 at each interior mesh point and iteration proceeds until the maximum absolute

residual is reduced by approximately factor of 106. The initial residuals for the n = 64 and n = 63

size problems are 8192 and 7938, respectively. Table 2 gives the results of the simulations.

Table 2. Timings for the Scalar Liquid Crystal Problem on the Wavetracer

real user syst max. residual max. error

SOR (n=64) 6.2 0.3 1.4

SOR (n=63) 3.3 0.3 1.4

Pre-cg (n=64) 12.0 0.8 1.2

Pre-cg (n=63) 5.2 0.8 0.9

Multigrid (n=64) 4.0 0.5 0.6

Nested SOR (n=64) 6.8 0.5 1.7

Nested Multigrid (n=64) 4.0 0.4 0.7

DTC

outer iter.

2.7(-3) - 9
2.4(-3) -- 9

2.5(-3) -- 8

2.1(-3) -- 8

2.3(-3) -- 4

5.9(-3) -- 19(4,3,4,4,4)

5.9(-3) -- 8(4,1,!,1,1

Comparing the real execution times of these algorithms shows again that the preconditioned

conjugate gradient method is not competitive on this kind of architecture. The nested (multilevel)

methods use five levels with the coarsest level being of size n = 4. The numbers in parentheses in

the last column of the table are the number of outer Newton iterations needed to achieve

convergence at each level.
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We refer to a nonlinear Newtonbasedanalogueof the Full Multigrid (FMG) method asnested
(multilevel) multigrid. It employsNewton iteration on eachmeshlevel until the desiredaccuracyis
attained. In the caseof the exampleconsideredhere,this required4 outer iterations on the coarsest
meshand oneeachof the finer meshlevels. With the exceptionof the coarsestlevel, a V-cyclewith
vl = v2 = 3 is applied at each level to solve the linear system arising from the Newton process. It is

considerably faster than nested SOR in achieving the same reduction in the residual. Thus with the

exception of the initial 4 Newton cycles, it is a natural nonlinear analogue of the Full Multigrid

method (FM(]) [16, p.22]. Multigrid (non-nested) seems to perform the best since its timings are

essentially the same as nested multigrid but it has greater residual reduction. The SOR (n = 63)

iteration has the fastest real time but on a smaller problem where no virtual processing is involved.

Note that the optimal w from the Laplacian model was used in the SOR iterations for the scalar

problem. The experimental results showed that this was a good choice and gave the best

convergence over any other choice. The stopping criteria used to terminate the inner iterations for

each Newton step was nk = 1/(k + 2).

Full Liquid Crystal Problem

Table 3 gives the results of the numerical simulations for the full systems model. The same test

problem was used as in the case of the reduced model together with the appropriate Dirichlet

boundary conditions. Only the size n --- 64 problem was considered for this set of runs. The

following set of parameter values was used: L1 = 10.0, L2 = L3 -- 1.0, A = B = C = D --

M- M _ = i.0 and outside-field parameters axe set to Zero. Results from bol:h the 7-point and

9-poinl_ Cl_cretiza_ions are given. Both point and block il_erative methods were compared. The initial

maximum absolute residuals for the 7-point and 9-point schemes are 8.2(4) and 8.95(4), respectiveIy.

The iterationswere continued until the maximum residual was reduced by approximately a factor of

l0 s. The in]-tial m_imum error is 1.0 since initial guesses of qi - 0.0, i -- 1, .. •, 5 were used for the

interior mesh points. The simulations were all done in single precision.

The SOR methods used 10 inner iterations for each Newton outer iteration. The stopping criteria

used for the reduced model (nk -- 1/(k + 2)) was too restrictive in some cases and caused

convergence problems. Using 10 inner iterations avoided these problem areas. As before, the

multigrid methods outperformed their SOR counterparts. The 7-point iterative scheme (point

method) was competitive with the 9-point scheme for both multigrid and nested (multilevel)

mult'igrid. This was not the case for the SOP_meth0ds. The-9,1_o_nt scheme performed better for

the one-level SOR case but did worse for the multilevel iteration. Block methods were not

competitive for either multigrid or nested multigrid. The block method performed best for the

single-level SOR iterations, and was also competitive in the nested case. The best algorithm for

solving the test problem was again nested (multilevel) multigrid using the point iterative approach.

The 9-point scheme performed marginally better tThan the 7-point, producing a slightly smaller

residual, upon convergence, in about the same amount of real time. The pre-conditioned conjugate

gradient methdd§ were not _plemented fort_ie_ffil]_m0dei since ihey: showed to be=n0t_ competi-i_ive

in the reduced model-case [7]: _ :_ = ....... :
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Table 3. Timings for the Full Systems Liquid Crystal Problem on the Wavetracer DTC

real user syst max. residual max. error outer iter.

SOR (7p)

SOR (9p)

Block-SOR (9p)

Multigrid (7p)

Multigrid (9p)

Block-Multigrid (9p)

Nested SOR (Tp)

Nested SOR (9p)

Block-Nested SOR (9p)

Nested Muitigrid (7p)

Nested Multigrid (9p)

Block-Nested Multigrid (9p)

277.0 8.2 15.6

148.7 7.6 12.9

106.3 6.4 6.5

47.2 2.0 1.6

42.2 2.2 1.9

60.9 4.1 1.6

85.9 3.6 7.5

100.5 6.2 9.7

105.0 7.4 7.6

37.4 2.4 2.8

36.3 2.8 2.8

50.5 3.8 2.7

8.17(-2)
9.10(-2)
7.95(-2)
6.55(-2)
3.40(-2)
2.99(-2)
8.26(-2)
6.14(-2)
8.23(-2)
8.44(-2)

4.62(-2)

4.62(-2)

1.70(-5)

2.39(-5)

1.27(-5)

5.36(-5)

4.72(-5)

4.15(-5)

1.36(-5)
1.98(-5)
1.05(-5)
6.88(-6)

3.86(-6)

3.89(-6)

42(10 inner/out)

34(10 inner/out)

17(10 inner/out)

4(1 V-cyc/out)

4(1 V-cyc/out)

4(1 V-cyc/out)

18(3,1,2,4,8)

25(3,1,2,5,14)

18(3,1,2,4,8)

8(4,1,1,1,1)
8(4,1,1,1,1)
8(4,1,1,1,1)

CONCLUDING REMARKS

Multigrid methods work well as inner solvers for liquid crystal problems when implemented on

SIMD computers with 2-D grid architectures. Multi-colored SOR methods are also effective, but

due to the cost of inner products on such machines pre-conditioned conjugate gradient methods are

not. The multigrid algorithms (one-level and multilevel) perform better than their SOR

counterparts for the larger n = 64 problem.

Although the Wavetracer's mesh architecture fits the problem (discretization) well thereby making

communications between nearest neighbors efficient, it is not as well suited for multigrid algorithms.

This is due to the fact that the machine has a physical 2-D grid structure with 64 processors in each

dimension. For multigrid and multilevel iterative schemes a grid size of 65 x 65 is required for an

efficient implementation, because of the way the grid refinements are defined. So for an n -- 64 size

problem, the machine must to go into virtual processing mode, thus slowing down the execution

time of the algorithm and increasing the storage overhead. One solution would be to generate grids

that would not suffer this problem, but this involves considerably more complex coding, which

would also increase execution time and storage overhead but not to the same extent as virtual

processing. We emphasize that the multigrid implementation employed here is effectively the

sequential version of the multigrid method. Thus on the coarsest mesh only 0.4% of the processors

were active. Despite this disadvantage muItigrid proved the fastest of the algorithms tested. We

remark that although these methods worked well for the test problems, where the iteration matrix

was positive definite symmetric, convergence problems can be expected, when the system becomes

indefinite, due to the coarseness of the coarsest mesh. Use of a coarsest mesh with more points can

be expected to remove this problem as well as improving the performance due to higher processor

utilization. Further improvements in performance can be anticipated if parallelism were introduced

using the method of [4, 5, 8, 9, 15].
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